The almost Borel structure of surface diffeomorphisms, Markov shifts and their factors
نویسندگان
چکیده
Extending work of Hochman, we study the almost-Borel structure, i.e., the nonatomic invariant probability measures, of symbolic systems and surface diffeomorphisms. We first classify Markov shifts and characterize them as strictly universal with respect to a natural family of classes of Borel systems. We then study their continuous factors showing that a low entropy part is almost-Borel isomorphic to a Markov shift but that the remaining part is much more diverse, even for finite-to-one factors. However, we exhibit a new condition which we call ‘Bowen type’ which gives complete control of those factors. This last result applies to and was motivated by the symbolic covers of Sarig. We find complete numeric invariants for Borel isomorphism of C1+ surface diffeomorphisms modulo zero entropy measures; for those admitting a totally ergodic measure of positive (not necessarily maximal) entropy, we get a classification up to almostBorel isomorphism.
منابع مشابه
Isomorphism and Embedding of Borel Systems on Full Sets
A Borel system consists of a measurable automorphism of a standard Borel space. We consider Borel embeddings and isomorphisms between such systems modulo null sets, i.e. sets which have measure zero for every invariant probability measure. For every t > 0 we show that in this category there exists a unique free Borel system (Y, S) which is strictly t-universal in the sense that all invariant me...
متن کاملDynamical Borel-Cantelli lemmas for Gibbs measures
Let T : X 7→ X be a deterministic dynamical system preserving a probability measure μ. A dynamical Borel-Cantelli lemma asserts that for certain sequences of subsets An ⊂ X and μ-almost every point x ∈ X the inclusion Tnx ∈ An holds for infinitely many n. We discuss here systems which are either symbolic (topological) Markov chain or Anosov diffeomorphisms preserving Gibbs measures. We find suf...
متن کاملGood Potentials for Almost Isomorphism of Countable State Markov Shifts
Almost isomorphism is an equivalence relation on countable state Markov shifts which provides a strong version of Borel conjugacy; still, for mixing SPR shifts, entropy is a complete invariant of almost isomorphism [2]. In this paper, we establish a class of potentials on countable state Markov shifts whose thermodynamic formalism is respected by almost isomorphism.
متن کاملBorel Isomorphism of SPR Markov Shifts
We show that strongly positively recurrent Markov shifts (including shifts of finite type) are classified up to Borel conjugacy by their entropy, period and their numbers of periodic points.
متن کاملThermodynamic formalism for countable Markov shifts
We give an overview of the thermodynamic formalism for countable Markov shifts, and indicate applications to surface diffeomorphisms. 1. What is “thermodynamic formalism”? 1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015